シラバス表示
        
開講年度 2023年度 登録コード T4066300
授業名 人工知能(20T以降)
Artificial Intelligence
担当教員 山﨑 公俊 副担当  
講義期間 前期 曜日・時限 木1 講義室 工C3-103教室 単位数 2
対象学生   授業形態 講義 備考  
授業で学べる「テーマ」 その他
全学横断特別教育プログラム
注意)「曜日・時限」「講義室」等は変更される場合がありますので、「キャンパス情報システム」や「掲示」等で確認してください。

(1)授業の達成目標
【授業で得られる「学位授与の方針」要素】【授業の達成目標】
23Tカリ
【22T~】専門分野における専門的学力が身についている。
(2)授業の概要人工知能と知能ロボティクスに関する基礎知識を学ぶ.授業の一部は実習形式として,ロボットプログラミングに関する内容を取り扱う.
(3)授業計画第1回  ガイダンス
第2回  探索問題
第3回  動的計画法
第4回  確率システムの基礎
第5回  ベイズフィルタ
第6回  粒子フィルタ
第7回  機械学習(回帰)
第8回  機械学習(分類)
第9回  中間試験
第10回 pythonの基礎
第11回 座標変換
第12回 ロボットプログラミング(1)
第13回 ロボットプログラミング(2)
第14回 ロボットプログラミング(3)
第15回 復習とまとめ,授業アンケート
(4)成績評価の方法試験(80%)および実習(20%)の合計点で成績評価をおこなう.授業時数の2/3以上を出席し,期末試験を受けていなければ成績評価の対象とはならない.出欠に確認については出席確認システムを利用する.
(5)成績評価の基準授業で扱った内容と同レベルの問題を,参考資料を参照しつつ解ければ「水準にある」とする.同レベルの問題を参考資料なしに解ければ「やや上にある」,やや難しい応用問題が解ければ「かなり上にある」,難しい応用問題が解ければ「卓越している」とする.
(6)事前事後学習の内容事前学習:線形代数,微分積分,確率の復習.パソコンの取り扱い,プログラミングの練習
事後学習:講義内容に沿った理論的内容の復習,プログラムの実装による理論の確認
(7)履修上の注意線形代数,微分積分,確率の知識があること,パソコン操作とプログラミングの技術があることが望ましい.
後半のロボットプログラミングでは,学科推薦パソコン以上の性能(例:メモリ8GB以上)を要するので注意されたい.
(8)質問,相談への対応原則として授業の時間内におこなうが,メールでも質問を受け付ける.
(9)その他 
【教科書】指定しない
【参考書】イラストで学ぶ 人工知能概論(谷口忠大)講談社(2,600円)
言語処理のための機械学習入門(高村大也)コロナ社(2,800円)
ROSではじめるロボットプログラミング(小倉崇)工学者(2,300円)
【添付ファイル】 なし



戻る